Contributions to the Theory of Weakly Distributive Complete Boolean Algebras
نویسندگان
چکیده
We investigate complete Boolean algebras that carry a continuous submeasure.
منابع مشابه
Profinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملRegular Subalgebras of Complete Boolean Algebras
It is proved that the following conditions are equivalent: (a) there exists a complete, atomless, σ–centered Boolean algebra, which does not contain any regular, atomless, countable subalgebra, (b) there exists a nowhere dense ultrafilter on ω. Therefore the existence of such algebras is undecidable in ZFC. In ”forcing language” condition (a) says that there exists a non– trivial σ–centered for...
متن کامل1 5 D ec 1 99 7 REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS
There is shown that there exists a complete, atomless, σ-centered Boolean algebra, which does not contain any regular countable subalgebra if and only if there exist a nowhere dense ultrafilter. Therefore the existence of such algebras is undecidable in ZFC. A subalgebra B of a Boolean algebra A is called regular whenever for every X ⊆ B, supB X = 1 implies supA X = 1; see e.g. Heindorf and Sha...
متن کاملComplete Ccc Boolean Algebras
Let B be a complete ccc Boolean algebra and let τs be the topology on B induced by the algebraic convergence of sequences in B. 1. Either there exists a Maharam submeasure on B or every nonempty open set in (B, τs) is topologically dense. 2. It is consistent that every weakly distributive complete ccc Boolean algebra carries a strictly positive Maharam submeasure. 3. The topological space (B, τ...
متن کاملFilter theory in MTL-algebras based on Uni-soft property
The notion of (Boolean) uni-soft filters in MTL-algebras is introduced, and several properties of them are investigated. Characterizations of (Boolean) uni-soft filters are discussed, and some (necessary and sufficient) conditions for a uni-soft filter to be Boolean are provided. The condensational property for a Boolean uni-soft filter is established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007